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§1.  Consider the supersonic flow over a "sphere-cone" body 
(ABC in Fig. 1), performing plane angular oscillations relative 
to the center  0 according to the law 

a = a„ cos cot (1.1) 

where  a  is the instantaneous value of the angle of attack.  In 
Fig. 1 ME  is a condensation shock and  QP  is the sonic line. 
We will assume that the conditions 

a0 « 1    ^ « 1 (1.2) 

are satisfied, where  V]^  is the free stream velocity and  L is 
a characteristic length of the body.  Therefore, the perturbations 
caused by the oscillating body will be small so that the problem 
can be solved by the method of small disturbances.  We note that 
the second condition (1.2) is satisfied to a high degree of ac- 
curacy for supersonic flight. 

Restricting ourselves to the linear approximation with re- 
spect to the frequency, we will neglect quantities of order  ctQ 
and order  aQa)2.  Then the parameters of the gas:  the velocity 
V,  the pressure  p  and the density  p  can be represented in 
the following form: 

—>  ->    ^    -> 
v = vn + av + Av. ,   P = Pn + aP^ + ap.,   p = pn + ap + dp.   (1.3) 0     a    a 0     a.        ra r   r0    ra    ra   x   ' 

The parameters with index  0  describe the basic field aris- 
ing from the stationary flow over the body.  Parameters with 
indices  a and d describe the perturbation field which occurs 
in phase with the angle of attack and the angular velocity respec- 
tively and do not depend on the time and the frequency. 

Let us substitute the expansions (1.3) into the system of 
equations of gas dynamics written in a moving coordinate system 
connected to the body. Then,for determining parameters with in- 
dex a we obtain the system of linear equations 
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--"^1>I„I 

-^ —> 
grad(v0va) v 

->   —> 
. x rot v 0        a. 

—» 
v  rot v a 0 - -f 8rad  p0 — grad p p0 S   Pa 

—> -^ 
div(p,,v + p v«) vr0 a   ra 0 

= 0 (1.4) 

p0^ vn   grad 
Y  0 &   Vp. 

'f_a     rcr~N —> 
7 

^(K + v grad ( — ) = 0 v v 
and for determining parameters with index  d 

—> r—» -^    —>        —> —> 

v + grad;vn(v, - v .) I ~ vn x rot v. a  0   [ 0v a    ea^ J    0        a 

^   ^ ^    pd 1 
" (vd - ved> x rot  v0 = ~ Srad P0 ~ ^7 grad Pd 

P0 
Ho 

(1.5) 

p     + divCp.v«  +  p^v.)   -  v   .   grad  pn   =  0 

1 

p     p.. -> p • P. 

C?: -Y ^) ^ vo 8r.ad (F Y 
0 v 

—» —» J0 +   (v.   -   v   .)grad — = 0 a ea Y 
p0 

where  ve  is the moving velocity vector.  Here the parameters 
with index  0  satisfy the system of equations 

grad -5- - vft x rot vr = - — grad p 
P 0 0 

div p0v0 = 0 
p0 

v0 grad — = 0 

which describe a stationary gas flow, 

(1.6) 
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n 
We will suppose that the spherical and conical parts of the 

surface are joined without jumps of the slope generatrices (with- 
out corners) .  Furthermore^ let the semiangle of the cone, 9S, 
be such that the point of junction B is always found in the 
supersonic region.  The first family characteristic BD,  start- 
ing from the point of intersection  B,  divides the region be- 
tween the condensation shock and the surface of the body into two 
parts for the stationary flow over the body at zero angle of at- 
tack.  "In the region ABDM the flow is the same as the flow over 
an isolated sphere and does not depend upon the presence of the 
conical part.  In the region  DBC  the flow is determined by the 
motion of the conical part of the surface of the body and by the 
propagation of the initial perturbations, given on the character- 
istic  BD,  and also by the stipulated flow over the spherical 
part of the body. 

§2.  We will begin with the determination of the flow in 
region ABDM.  For this let us consider the flow over the sphere 
performing plane angular oscillations with respect to the center 
0  (see Fig. 2) according to the law (1.1).  The motion of the 
sphere can be decomposed into a translational motion with velocity 

v   equal to the absolute velocity of the center,  0^,  of the 

sphere and a rotational motion around the center with velocity 

v„ ,  determined by the law (1.1).  We will introduce, in the ex- 

amination, a spherical system of coordinates  R2, ©2' ^2  connec- 
ted with the body with the relative velocity 

I 
T 

and a partially^connected system of coordinates (spherical co- 
ordinates  R^, 0^, n.]_  and rectangular coordinates  x, y, z) , 
translating with velocity v   (Fig. 2). 

—» ->* -*** 
v = V + V e e e (2.1) 

Let us consider the perturbations coinciding in phase,as is 
defined,with the angle of attack.  In the linear approximation 
with respect to frequency these perturbations correspond to the 
stationary flow over a body at an angle of attack a.  It is 
evident that for the stationary flow over the sphere the gas dy- 
namic parameters in the system of coordinates  R^, 9-^,   (xi  do not 
depend on the angle of attack but in the system of coordinates 
R2, ©2* '-^  ■'■n t'rie ]-i-near approximation with respect to  a,  we 
have the relations 

Research Department 
TR-24 
December 1962 



i 

f (a) = f0 + a (■ 
a=0 

v(a) = v 
0 

+ KlS) 
a-0 

where  f  is an arbitrary scalar parameter.  Making use of the 
relations for the partial derivatives with respect to time in the 
moving system of coordinates, we obtain for the scalar parameter 
f 

f  = ( ^— )   = v . grad f„ a   vday n ea 0     0 
a=0 

(2.2) 

i 

I 

and for the vector velocity v 

—» 

v = (v . V)v 
a=0 

= r^ 
0 

or 

—» 

v  = grad(v . v^) a ea 

—> 

—> 

k x v OJ 

—> 

'0' 
** 

v . x rot v-, ea       0 

(2.3) 

—> 

where  k  is a unit vector directed along the axis of the rec- 
tangular system of coordinates, and v . = ^ o J *      ea   < 7a. 

Relations (2.2), (2.3) permit us to express the parameters 
with indices  a by means of the parameters of the stationary 
flow over the sphere. 

Let us now consider the perturbations coinciding in phase, 
as defined, with the angular velocity.  The rotational motion of 
the sphere around its center  0]^  does not cause perturbations in 
the flow of an ideal gas.  Therefore, the perturbations with 
indices  ä  are determined by the translational flow over the 
sphere with relative velocity 

-», 

= - &iL1 
l-1 (2.4) 
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—=> 
where j  is a unit vector directed along the  y axis  of the 
rectangular coordinate system and  i^  is the distance between 
the points  0^  and  0,  measured in the direction of the axis 
©2=0  (see Fig. 2).  In the linear approximation with respect 
to frequency the translational motion of the body, with velocity 
(2.4) in the partially fixed system of coordinates, is equivalent 
to a stationary flow at a fictitious angle of attack 

ai. 
(2.5) 

Taking this into account, we obtain for the arbitrary scalar 
parameter  f 

a V,  a 
(2.6) 

and  for   the velocity vector     v 

v. a v 
* 

ed V1 
Va 

or a 

-» 

v ea — v - v . V-.  a   ea (2.7) 

I Relations (2.6) and (2.7) also permit the parameters with 
indices d to be expressed by means of parameters of the sta- 
tionary flow over the sphere. 

It is easy to show that the obtained solutions (2.3) and 
(2.6), (2.7) satisfy the system of equations (1.4), (1.5) and the 
boundary conditions on the body 

VaR = 0 ' dR 
v .D = 0 eaR for R = R (2.8) 

where the index  R denotes the projection of a vector on the  R 
axis of the spherical system.  In fact, because the system of 
equations (1.4) and the first relation (2.8) can ha  obtained by 
variation, with respect to the angle of attack a,  of the exact 
system of differential equations of gas dynamics and the boundary 
conditions on the surface of the body, written for the case of 
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stationary flow,, then it is clear that the solution (2.2), (2.3) 
satisfies both the system of equations (1.4) and correspondingly 
condition (2.8).  Substituting (2.2) and the second relation 
(2.3) into the system of equations (1.5) and using relation (2.1), 
we obtain 

,r. ^ *   1      -^ 7*        -* * 
grad v„(v.   -  v   .)      - vrt  x rot   (v.   -  v   .) 0       [   0     a ear JO v a ea/ 

-*        -* ^   pd 1 
" (vd " ved) x rot v0  =~2  Srad PQ " J-  grad Pa 

P0        
Ho 

"* *.    "* 
(2.9) 

divLP0(vd - ved) + p.v0J = 0 

— v0 grad CiT " ^ ^ + (vd " Vea>Srad ~ - 0 
Pn 0       0 Pn 

Comparing (2.9) with (1.4) and the second relation (2.8) with 
the first, we see that the solution (2.6), (2.7) satisfies the 
system of equations (2.5) and correspondingly condition (2.8). 

§3.  Let us now dwell on the calculation of the flow in the 
region  DBC.  We introduce a special cylindrical coordinate sys- 
tem, connected with the body (Fig. 1).  The axis of this system 
coincides with the axis of symmetry of the body.  The meridian 
plane is fixed by the angle ip  =   -   \i2>     and the position of a 
point in the meridian plane is fixed by polar coordinates  R, 0 
with pole at the point of intersection of the generating spheri- 
cal and conical parts of the body.  The solution of the system 
of equations (1.6), (1.4) and (1.5) must satisfy the boundary 
conditions on the surface of the body 

V0e = 0 '   Va0 = 0 '   vdö - ved0 = 0   for   Ö - ec    <3-1) 

where the index  0  denotes the projection of a vector on the  0 
axis, and must take the given values on the characteristic surface 
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n 
BD,  which is determined as a result of the calculation of the 
flow over the spherical part of the body. 

Because the flow in the region DBC is supersonic, then for 
the solution of the nonlinear system of equations (1.6) and for 
the solution of the linear system (1.4) and (1.5) we may use the 
method of characteristics.  However, this method for obtaining 
numerical results requires a great outlay of labor and the appli- 
cation of high speed electronic machines in each concrete case. 
Therefore, we cite here an approximate analytical method of so- 
lution of the problem.  A solution will be sought in the form-1" 

f = (fAn+ rfni+ . . .) + a(f --,+ rf , + ...)cos *+ä(f,_ + rf.,+ . . .)cos f 00    01     '   ^ aO    al     ' r   v aO    al     '    Y 

(3.2) 
Vi   = a(va^  + rvc^l  +   • • Osin  ^ + dCv^  + rvdfl  +   . . .)sin  f 

I 
I 

where f  is an arbitrary unknown parameter, excepting the projec- 
tion of the vector velocity on the f  axis.  The coefficients in 
the expansion (3.2) depend only upon  9. 

Substituting the corresponding expansions into the system 
of equations (1.6), (1.4) and (1.5), written beforehand in terms 
of projections on the axis of the cylindrical system of coordi- 
nates  R,  0, tp,     we obtain systems of ordinary differential 
equations with respect to  0.  Solutions of these systems must 
satisfy the boundary condition at  0 = 0g  and the initial condi- 
tions at  0 = 0*,     where  0   is the angle of inclination of the 
tangent to the characteristic  BD  at the point  B  (for r = 0). 
For parameters with index  00  we obtain the following system of 
nonlinear equations 

This form of dependence upon f     is necessary from considera- 
tions of the boundary conditions on the body and the form of 
the initial data on the characteristic  BD  (see the following). 
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1 
= 

i 

VO0O '    VO0O + vOrO = 

pOO 
'OrO POOVO0O 

pOO 
pOO 

+ 
VÖ0O + vOrO  0    

pOO 
VO0O        p0l 

const. 

(3.3) 

and the supplementary finai relation 

2     2 2 
V0r0 + VO0O .  7  P00   Vmax 

+ ~--^ = -~ (3.4) 
2        Y-l PQO    2 

where  vinax  is the velocity of the flow into a vacuum and the 
prime denotes differentiation with respect to  0.  Let us substi- 

tute the expressions for P00/P0(r PQO^OO     
and p00^p00  froin 

equations (3.3) and (3.4) into the result of differentiating 
(3.4).  Taking into account the first equation (3.3), we obtain 

C^T v0r0 + v0r0 " vmax)(v0r0 + ^ro) = 0 (3-5) 

Equating to zero the first factor, with the aid of (3.3) 
and (3.4), we obtain a Prandtl-Meyer solution.  This solution for 
parameters with index  00  would be required by us in the case of 
a junction of the spherical and conical sections with a jump in 
slope at the point  B.  In the case under consideration it is 
necessary to equate to  0  the second factor (3.5).  Thereby we 
obtain a solution satisfying the initial and boundary conditions: 

V0r0      , v0r0   . 
v0r0 =  * COS *' VO0O = * Sln 9 cos 9 cos cp 

p00 = p00 '    P00 = p00    (<P - e - 0C) 

(3.6) 
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where the asterisk superscript denotes values of the parameters 
at  0=0*.  The solution (3.6) describes a uniform translational 
motion.  For the remaining coefficients in the expansion (3.2) we 
obtain a system of linear differential equations which are easy 
to integrate in finite form.  We will cite the results of the 
integrations for the coefficients in the expansion of the pressure 
p,  necessary for the calculation of the aerodynamic loads acting 
on the body 

P01       r * Pal       m * 
P01 = ■ * COS *'     PaO = PaCr  pal * cos ^  pd0 = Pd0 

cos cp cos 9 

(3.7) 

1  [ *      *  *     *1 *  v0r0 
pdl =  ~^ pdl + 2p00v0r0 tan ^ cos ^ " 2p00  * Sin 

cos q^ cos 9 

For the completion of the solution of the problem in region 
DBC,  it is necessary to express the initial data on 0=0* 
with the aid of the solution obtained in §2 for the flow in re- 
gion ABDM. 

§4. Let us begin with the derivation of the equation of the 
actual perturbed characteristic surface., passing through the line 
of intersection of the spherical and conical parts of the surface 
of the body.  We will seek this in the form: 

0 = (0* + r01+ ...) +a(ö
a0 + real

+ • ..)cos  ^+d(0do + r0dl+ ...)cos ^(4.1) 

The form of the characteristic surface is determined by the 
condition 

M . ^ . ^  = . M =  ZMl]* grad F 
N - n(v - v ) •= a,    N = —   i —, n = —        -   (4.2) e 

y |grad Fi2 v^ |grad F|2 

—> 
where n  is the unit normal vector,  N  is the relative velocity 
of motion of a point of the surface in the direction of the normal. 
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F(T,d,f,t)   =0  is the equation of the characteristic surface, 
and a  is the local velocity of sound. 

Substituting (4.1) into the second and third relations 
(4.2), we obtain 

N = - d(re „ + ...)cos f 

nr = - (,vei +   . . .) - a(ral + . . .)cos ^ - a(r0al + . . .)cos V    (4.3) 

0aO                  0äO 
n = 1,  n/ = c\r D ^ • • • jsin ip +  oTr f- . . .) sin ^ 

where  R^ = BF (Fig. 1).  Let us substitute the expansions (3.2) 
and (4.3) into the first relation (4.2).  Expanding the functions 
of  6  in a series in terms of  0-9*  by (4.1), we obtain ex- 
pressions of the coefficients in the expansion of the equation 
of the characteristic surface (4.1) in terms of the values of 

I        the parameters of the gas at  0 = 0*.  We cite the expressions 
for two of the coefficients which are necessary to us in what 
follows 

I 
■k              -k -k              -k 

v „A + a „ v. -,.-. 4- a.n a0O aO _   agO   aO           //. ^ 
'a0 = "  ' *   '* ' dO = "  ' *    '*           (4.4) 

v0e0 + a00 VO0O + a00 

ann, a », a,- are the coefficients in the expansion of the local 

velocity of sound (3.2). 

Writing down the condition of continuity of parameters on 
the actual perturbed characteristic and expanding the functions 
of 9  in a series with respect to 9  -   Q*,     we obtain that at 
0=0*  it is necessary to satisfy the following relations: 
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* 
fooJ - 0^ "01 + e. :00j =  0 

I   *1 
L   a.0j 

+  0 a0I    00 I =  0 

"alj 
.' * ] 
:aO I + r •*] 

a0if0lj   + VaO ^OOJ 
+ 0al[fOOj =  0 (4.5) 

fäoJ + edoLfooJ = 0 

. alj eiLfdoJ + ÖdO| 
.1*1 

"OlJ 
+ ei0do[fooj + 0 dl[ 00 J 

= 0 

I 
I 

where the bracket denotes a jump in the quantities contained in 
it from the left to the right for the approximation at  0 = 0*. 
The continuity of the parameters of the gas on the actual per- 
turbed characteristic surface and the distinct analytical char- 
acter of the solution (jumps in derivatives) on both sides of it 
lead to the fact that for a united solution, describing the flow 
on the spherical and conical parts of the body it is necessary 
to take into account discontinuities of parameters along the line 
0 = 0' as indicated in (4.5) 

In the conclusion of this paragraph let us make one remark. 
If the system of equations (1.6) _, (1.4) and (1.5) is projected 
on the axis of the cylindrical system of coordinates and if one 
eliminates from the parameters of the perturbations (with indices 
a  and  d)  the dependence upon f,      then it is easy to see., that 
the coefficients for the corresponding derivatives in all three 
systems coincide, and consequently, the characteristics of the 
linear systems of equations for the perturbations coincide in 
the physical plane with the characteristics of the nonlinear 
systems of equations describing the stationary flow over a body 
at zero angle of attack.  This circumstance is convenient for 
the integration of the linear system of equations (1.4) and (1.5) 
by the method of characteristics.  However, from the preceding 
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considerations, it is clear that for calculations with the aid of 
relations of the type (4.5) it is necessary to take into account 
discontinuities of the perturbation parameters on the character- 
istics separating regions with different analytical character of 
the solutions. 

§5.  With the results of §2^ the coefficient values in the 
expansion (3.2) are determined on the line  0 = 9*,     by using the 
approximation on the side of the spherical part of the body. 
These coefficient values will, be denoted by the subscript  s. 

^In the vicinity of the surface  0 = 6   ,   9~ » a.,     and 
ir - ©2 » a,  so that  ^2 = M-i + 0(a) .  Taking this into account, 
and remembering the expressions 

** ** ** 
v .„ » 0 .     v.„ = -R cos M- .     v  , = R cos 0 sin \x (5.1) eaR ea0 ea^ 

from (2.3) and (2.2) we find 

f (R2^   e2'   ^2'   ^   =  ^^2'   e2^   ~   a "^^ COS  ^2 

(5.2) 
avO0 v   (R0,   eo,   |j,0,   a)   =  7C~  sin  |a0 

sxn 0_ 

One can easily find the desired values of the coefficients 
for the expansion (3.2) for  0=0* on the side of the spherical 
part with equations (5.2) and (2.6) and using the relations between 
components of the velocity vector in cylindrical and spherical co- 
ordinate systems 

vR cos(0 + e2) + v0 sin(0 + 02) 

(5.3) 

v0 = vR sin(0 + 02) + ve cos(0 + 02)vV/ = - v^ 
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and the relations 

.OR. 

öä« ■ ■" *>.. ■ • 

(5.4) 

be. 
Csf) r=0 

cos cp 
R 

Ö0O 

where  R   is the radius of the sphere 

Assuming  R  = 1  and using the relation  (0 2) -n 

for coefficients in the pressure expansion, we have 

^ c^ 

(poo)r = ^0^-0 

(P01)s  =  sin cp    (_)        + cos  9    Q^ 
2 r=0 ö02    r=0 

2  r"ü öe2    r=0 

(pa0>s   =  "  CvT 
aö2     r=0 

[) 

(5.5) 

-   S-   ^ (4^) -   cos   / (% 
^92ÖR2    r=0 2       r=0 

£. 

"   V^PaO^   ' (Pdl>s   =  -   V^CPal)* 
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Equations (4.5) determine the relation between values of the 
coefficients of expansion in r  on the line  0=0* by approach- 
ing the line from both sides.  For the pressure, in particular, 
we have 

p00 = (p00)s-'  Poi= (PoPs'  pa0" ^aO^'  pal = ^aPs + ea0[p01 J 

pd0 = (pdO>s'  pdl = ^al>B  +  0do[pOlJ 

The magnitude of the jump in  Pni   in these forinulas: 
according to (3.7) is determined by the relation 

| aoo =: 0'    voeo " " cos '""^O^r-O 

a. _ = - rr- a „ .    v. .-, = - rr- v ,_ 

(5.6) 

LpOlJ = ÜQlh +  tan 9 (PoPs (5'7) 

and the parameters  0 ^  and  0.„  by the relations (4.4) 

aa0 " - C^-;   '     va0O = 
S:Ln *    C3~) (5-8) 

öe
2 r=0 ö02  r=0 

a-r\  =   ~  TT a  r\> v.nn = - rr- v nn + sin cp aO    V1  aO      a0O    V,  a0O 

§6.  Let us consider how to determine the aerodynamic moment 
M2,  acting on the oscillating body in supersonic flow.  The 
moment is made up of two parts.  The first part  (Mz)s  is crea- 
ted by the pressure force, acting on the spherical part of the 
body surface, the second is the pressure force acting on the 
conical part of the body surface.  We introduce the pressure co- 
efficient by the formula 
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M 
G  =  
mz   i„ „2 fp^VfLTrCL tan 0 ) 

where  p,  is the density in the undisturbed flow, and L  is a 

characteristic length of the body (Fig. 1). 

(6.1) 

Then the derivatives of the moment coefficient with respect 
to a     and ß,     where  ß = dL/V^,  can be represented for the 
spherical part in the form 

^CmzcPs = 4 1 + 
(Y-I)M; a L      2 n cos  0 h 2   a COS   0, 

X 

77 /2-e 

X 
r\; r\s 

Lpo (P0)r=0jsin 0 cos 0 d0 (6.2) 

i  x0 
^mzß^s :: " VL ~ L    2  a )^

Cmza) 2   , 
cos  0 

and for the conical part in the form 

(G  )  = 2 mzcr c 1 + 
(Y-1)M[. 

o 

sin  0     cos c 
0 
c 

/-^ xo ^(f- r- O + 

O-, 

• 2 n sin  0 
f fi 
2^L • ^o (6.3) 
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(Wc = 21 + 
(Y-l)M^ sin ec  cos 0  'IVL £/#. ^ oj + 

a. 

sm 
■ ri ^ 

) 
(6.3) 
(Cont.) 

where 

flCl/ L '   O " 3 -C?) 1 i    2 ■7 r- cos e 2 L      c i - r-^ 
21 

f ri fo Öc; " x0/L|4 
+ TIKT)    - 3 L (6.4) 

.   I 2 + T cos  0 
L       c 

1 fo 
2 L 

1 
3 

vxo 
6VL 

and the parameters  P o^ P ^ P*n' p"i  are considered by expan- 

sion of the nondimensional pressure perturbation 

rl  max 
<Pa° + I" PaD^8  ^ + <Pdl   + t Pal)008  ^ u s s 

(6.5) 
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n 
For convenience of comparison with the aerodynamic charac- 

teristics of conical bodies the geometrical parameters of the cir- 
cumscribed cone are introduced in formulas (6.2) and (6.3) (see 
Fig. 1). 

The method being suggested was used in the calculation for 
Ki  =4.0,  The necessary data on the parameters of the stationary 
stream line of the sphere are taken from paper [1J.  In Figs. 3 
and 4 are presented the functions 

C        = (C       ) 0+ (C       )    ,        C     ft= (C     ß)    + (C     „) for       BC =  R raza     x  mzcr s     ^  mzcr c mzß      % mzß' s mzß^ c s 

(ß = dL/V1) 

I 

of the cone half angle 9C    and of the center of oscillations 
ü/L,  A positive sign on  Cmza  corresponds to statistical stabil- 
ity5 and a positive sign on  Cmzß  to damped oscillations.  The 
graph in Fig. 5., where the value of  CJ^R X 10-*  is given, shows 
the contribution of the spherical part of the body to the aero- 
dynamic moment.  This contribution is small for large  0c,  but 
rapidly grows with decreased angle of attack, if only the center 
of oscillation is not too closely located to the center of the 
sphere, 

§7.  Now we will consider the flow over the sphere, per- 
forming plane angular oscillations with center 0  (see Fig. 2) . 
The oscillations about a certain fixed angle-of-attack a* are 
given by the law 

a = a + Aa- cos a>t (7.1) 

In accord with Fart 2 the perturbations caused in the flow 
by the angular oscillation of the sphere with center  0  are 
equivalent to translation with absolute velocity by the sphere 
with center 0^.  In the case of slow oscillations, if one is 
restricted to a linear approximation with respect to frequency, 
translations of the body cause the same perturbations in the gas 
flow as an imaginary change in both angle-of-attack and velocity 
of the undisturbed flow: 
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.     ü- cos a 
Aa  = -  

<!>        V-, 

■A' 

d, AV1$ = ^ 
*. sin a a (7.2) 

where  ij.  i-s t'16 distance between points 0  and O^,  positive 
at the rear position of the center of oscillations. 

The moment coefficient, relative to the point 0., acting on 
the stationary streamline of the sphere under angle-of-attack a, 
is determined by the arelation 

Snz^ ' V - — sin a C^) 
s 

(7.3) 

where the radius of the sphere is considered as the characteris- 
tic dimension,  Cx  is the drag coefficient of the sphere.  Cal- 
culating the change in moment caused by a fictitious change of 
angle-of-attack and flow velocity (7.2) we obtain 

I 

I 

dR 
AC mz v 

2     * 
C + sin  a x 

or taking into account (7.3), 

dC 
C + ^ x aVJ VR ̂) 

1       "k 
C   = - ^r-  cos a C mza    R        x 

s 

OR 
(7.4) 

£       I 3C 
Cmzß = (R")  Cx + Sin aX-   Cx + ^ ö£) 

S   L 1 . 
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In conclusion we note that the preceding derivatives of the 
moment coefficient are associated with the generally used coeffi- 

ß  fiz0 cients of rotational derivatives  C  , C  , C "   in the follow- mz   mz mz-' 
ing manner (see [2j) 

mza = - G 
a 

'mz mzß = C 
ß + C z mz   mz (ß = a0L/V) (7.5) 
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Fig. 4 

23 
Research Department 
TR-24 
December 1962 



I 

I 
I 

75 

50 

25 

0.50 
^***2$93f 

075 m{ 

Fig. 5 

24 
Research Department 
TR-24 
December 1962 


